En poursuivant votre navigation, vous acceptez l'utilisation de cookies destinés à améliorer la performance de ce site et à vous proposer des services et contenus personnalisés.



With the financial support of


The goal of this project is to measure the electronic states in condensed matter out of equilibrium conditions. This objective is achieved by means of a the natural extension of Angle Resolved Photoelectron Spectroscopy (ARPES) to the investigation of photoexcited systems. In ARPES measurements, a photon beam induces the emission of electrons from a solid surface. The band structure of a crystalline solid is reconstructed by analyzing the emission angle and the kinetic energy of the photoemitted electrons. In the case of time resolved photoelectron spectroscopy, a pump pulse is absorbed by the surface, therefore creating a non equilibrium state. A second pulse in the ultraviolet spectral range probes the photoexicted state via the photoemission process. This technique provides instantaneous photographs of the electronic states with temporal resolution better than 100 fs. The dynamics of the electronic states is obtained by changing the temporal delay between the pump and probe pulse.



Laboratoire des Solides Irradiés (LSI):
Luca Perfetti (Professor, Ecole Polytechnique)
e-mail: Nous contacter
Tel. Polytechnique: +33 (0)1 6933 4556
Tel. Soleil: +33 (0)1 6935 9671

Laboratoire de Physique des Solides d'Orsay (LPS):
Marino Marsi (Professor, Université d'Orsay)
Evangelos Papalazarou (Assistant Professor, Université d'Orsay)


Jérôme Faure,, Time Resolved electron Diffraction
Amina Taleb, Véronique Brouet Angle Resolved Photoelectron Spectroscopy
Tobias Kampfrath, Time Resolved THz Spectroscopy


The interaction of photons with condensed matter is one of the oldest and broadest subjects of physics. Albeit most of the experiments are performed in equilibrium conditions, new horizons of condensed matter physics can be explored when a strong perturbation drives the system into a highly excited state. By time resolved photoelectron spectroscopy we have direct access to the electronic states during the photoexcitation and relaxation process. This window in the time domain offers new insights on the electrons dynamics in topological insulators, high temperature superconductors and many other exotic systems.

Recent research subjects are:

Recent publications

[1] Unraveling the Dirac fermion dynamics of the bulk-insulating topological system Bi2Te2Se, E. Papalazarou, L. Khalil, M. Caputo, L. Perfetti, N. Nilforoushan, H. Deng, Z. Chen, S. Zhao, A. Taleb-Ibrahimi, M. Konczykowski, A. Hruban, A. Wolos, A. Materna, L. Krusin-Elbaum, and M. Marsi, Physical Review Materials 2, 104202 (2018).

[2] Hot electron relaxation dynamics in semiconductors: assessing the strength of the electron–phonon coupling from the theoretical and experimental viewpoints, J. Sjakste, K. Tanimura, G. Barbarino, L. Perfetti and N. Vast, Journal of Physics: Condensed Matter 30, 353001 (2018).

[3] Ultrafast electron dynamics reveal the high potential of InSe for hot-carrier optoelectronics, Z. Chen, C. Giorgetti, J. Sjakste, R. Cabouat, V. Véniard, Z. Zhang, A. Taleb-Ibrahimi, E. Papalazarou, M. Marsi, A. Shukla, J. Peretti, and Luca Perfetti, Physical Review B 97, 241201(R) (2018).

[4] Dynamics of out-of-equilibrium electron and hole pockets in the type-II Weyl semimetal candidate WTe, M. Caputo, L. Khalil, E. Papalazarou, N. Nilforoushan, L. Perfetti, A. Taleb-Ibrahimi, Q. D. Gibson, R. J. Cava, M. Marsi, Physical Review B 97, 115115 (2018).

[5] Time-resolved photoemission spectroscopy of electronic cooling and localization in CH3NH3PbI3 crystals, Z. Chen, M. Lee, Z. Zhang, H. Diab, D. Garrot, F. Lédée, P. Fertey, E. Papalazarou, M. Marsi, C. Ponseca, E. Deleporte, A. Tejeda and L. Perfetti, Physical Review Materials 1, 045402 (2017).

[6] Photoinduced filling of near-nodal gap in Bi2Sr2CaCu2O8+δ; Z. Zhang, C. Piovera, E. Papalazarou, M. Marsi, M. d’Astuto, C. J. van der Beek, A. Taleb-Ibrahimi, and L. Perfetti, Phys. Rev. B 96, 064510 (2017).

[7] Electronic band structure for occupied and unoccupied states of the natural topological superlattice phase Sb2Te, L. Khalil, E. Papalazarou, M. Caputo, N. Nilforoushan, L. Perfetti, A. Taleb-Ibrahimi, V. Kandyba, A. Barinov, Q. D. Gibson, R. J. Cava, and M. Marsi, Phys. Rev. B 95, 085118 (2017).

[8] Ultrafast evolution and transient phases of a prototype out-of-equilibrium Mott–Hubbard material, G. Lantz, B. MansartD. GriegerD. BoschettoN. NilforoushanE. PapalazarouN. MoisanL. PerfettiV. L. R. JacquesD. Le Bolloc'hC. LaulhéS. RavyJ-P RueffT. E. GloverM. P. HertleinZ. HussainS. SongM. CholletM. FabrizioM. Marsi, Nature Communications 8, 13917 (2017).