En poursuivant votre navigation, vous acceptez l'utilisation de cookies destinés à améliorer la performance de ce site et à vous proposer des services et contenus personnalisés.



With the financial support of


The goal of this project is to measure the electronic states in condensed matter out of equilibrium conditions. This objective is achieved by means of a the natural extension of Angle Resolved Photoelectron Spectroscopy (ARPES) to the investigation of photoexcited systems. In ARPES measurements, a photon beam induces the emission of electrons from a solid surface. The band structure of a crystalline solid is reconstructed by analyzing the emission angle and the kinetic energy of the photoemitted electrons. In the case of time resolved photoelectron spectroscopy, a pump pulse is absorbed by the surface, therefore creating a non equilibrium state. A second pulse in the ultraviolet spectral range probes the photoexicted state via the photoemission process. This technique provides instantaneous photographs of the electronic states with temporal resolution better than 100 fs. The dynamics of the electronic states is obtained by changing the temporal delay between the pump and probe pulse.



Laboratoire des Solides Irradiés (LSI):
Luca Perfetti (Professor, Ecole Polytechnique)
e-mail: Nous contacter
Tel. Polytechnique: +33 (0)1 6933 4556
Tel. Soleil: +33 (0)1 6935 9671

Laboratoire de Physique des Solides d'Orsay (LPS):
Marino Marsi (Professor, Université d'Orsay)
Evangelos Papalazarou (Assistant Professor, Université d'Orsay)


Jérôme Faure,, Time Resolved electron Diffraction
Amina Taleb, Véronique Brouet Angle Resolved Photoelectron Spectroscopy
Tobias Kampfrath, Time Resolved THz Spectroscopy


The interaction of photons with condensed matter is one of the oldest and broadest subjects of physics. Albeit most of the experiments are performed in equilibrium conditions, new horizons of condensed matter physics can be explored when a strong perturbation drives the system into a highly excited state. By time resolved photoelectron spectroscopy we have direct access to the electronic states during the photoexcitation and relaxation process. This window in the time domain offers new insights on the electrons dynamics in topological insulators, high temperature superconductors and many other exotic systems.

Recent research subjects are:

Recent publications

Ultrafast dynamics of hot carriers in a quasi–two-dimensional electron gas on InSe
Zhesheng Chen, Jelena Sjakste, Jingwei Dong, Amina Taleb-Ibrahimi, Jean-Pascal Rueff, Abhay Shukla, Jacques Peretti, Evangelos Papalazarou, Marino Marsi, Luca Perfetti, PNAS (2020).

Spectroscopy of buried states in black phosphorous with surface doping, Zhesheng Chen, Jingwei Dong, Christine Giorgetti, Evangelos Papalazarou, Marino Marsi, Zailan Zhang, Bingbing Tian, Qingwei Ma, Yingchun Cheng, Jean-Pascal Rueff, Armina Taleb-Ibrahimi, Luca Perfetti, 2D Materials 7, 035027 (2020).

Femto-to Microsecond Dynamics of Excited Electrons in a Quadruple Cation Perovskite
Eunhwan Jung, Kestutis Budzinauskas, Senol Oz, Feray Unlu, Henning Kuhn, Julian Wagner, David Grabowski, Benjamin Klingebiel, Marie Cherasse, Jingwei Dong, Pierfrancesco Aversa, Paola Vivo, Thomas Kirchartz, Tsutomu Miyasaka, Paul HM van Loosdrecht, Luca Perfetti, Sanjay Mathur, ACS Energy Letters 5, 785 (2020).

Band Gap Renormalization, Carrier Multiplication, and Stark Broadening in Photoexcited Black Phosphorus, Zhesheng Chen, Jingwei Dong, Evangelos Papalazarou, Marino Marsi, Christine Giorgetti,Zailan Zhang, Bingbing Tian, Jean-Pascal Rueff, Amina Taleb-Ibrahimi, and Luca Perfetti, Nano Letters 19, 488 (2019).

Evidence of direct electronic band gap in two-dimensional van der Waals indium selenide crystals, Hugo Henck, Debora Pierucci, Jihene Zribi, Federico Bisti, Evangelos Papalazarou, Jean-Christophe Girard, Julien Chaste, François Bertran, Patrick Le Fevre, Fausto Sirotti, Luca Perfetti, Christine Giorgetti, Abhay Shukla, Julien E. Rault, Abdelkarim Ouerghi, Physical Review Materials 3, 034004, (2019).