En poursuivant votre navigation, vous acceptez l'utilisation de cookies destinés à améliorer la performance de ce site et à vous proposer des services et contenus personnalisés.

X

Adaptive optics and wavefront shaping for nonlinear microscopy

Nonlinear microscopy provides 3D images of biological tissues down to depths of a few 100s microns. Several contrast mechanisms can be used to obtain complementary information (e.g. 2PEF, SHG, THG, CARS). These nonlinear signals strongly depend on the spatial distribution of the focused field (amplitude, phase, polarization). In turn, the field distribution near focus can be modulated by controlling the excitation field wavefront, amplitude and polarization at the pupil of the objective using an active element (deformable mirror, spatial light modulator, acousto-optic lens).

This opens interesting perspectives:

Adaptive optics: during in-depth imaging, the wavefront is often distorted by the optical inhomogeneities within the sample, thereby reducing the signal level and the resolution of the images. Wavefront correction can be used to restore image quality in aberrating samples.

Focus engineering permits modulating phase-matching conditions and contrast in coherent nonlinear microscopy (e.g. THG, SHG, CARS).

• The use of Bessel beams can be an efficient strategy for rapidly probing the nonlinear properties of extended volumes.


Related publications

"Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation"
N. Vuillemin, P. Mahou, D. Débarre, T. Gacoin, P.-L. Tharaux, M.-C. Schanne-Klein, W.Supatto, E. Beaurepaire
Scientific Reports 6, 29863 (2016).
"3D resolved mapping of optical aberrations in thick samples"
J. Zeng, P. Mahou, M.-C. Schanne-Klein, E. Beaurepaire, and D. Débarre
Biomed. Opt. Express 3(8), 1898-1913 (2012).
"Third-harmonic generation microscopy with Bessel beams: a numerical study"
N. Olivier, D. Débarre, P. Mahou, and E. Beaurepaire
Opt. Express 20(22), 24886-24902 (2012).
"Accuracy of correction in modal sensorless adaptive optics"
A. Facomprez, E. Beaurepaire, and D. Débarre
Opt. Express 20(3), 2837-2849 (2012).
"Simple characterisation of a deformable mirror inside a high numerical aperture microscope using phase diversity"
D. Débarre, T. Vieille & E. Beaurepaire
J. Microsc. 244 (2), 136-143 (2011)..
"Dynamic aberration correction for multiharmonic microscopy"
N. Olivier, D. Débarre & E. Beaurepaire
Opt. Lett. 34(20), 3145-7 (2009). PDF.
"Image-based adaptive optics for two-photon microscopy"
D. Débarre, E. Botcherby, T. Watanabe, S. Srinivas, M. Booth & T. Wilson
Opt. Lett. 34(16), 2495-7 (2009). PDF.
"Two-photon microscopy with simultaneous standard and extended depth of field using an acoustic gradient-index lens"
N. Olivier, A. Mermillod-Blondin, C.B. Arnold & E. Beaurepaire
Opt. Lett. 34(11), 1684-6 (2009). PDF.
"Third-harmonic generation microscopy with focus-engineered beams: a numerical study"
N. Olivier & E. Beaurepaire
Opt. Express 16(19), 14703-14715 (2008).
"Signal epidetection in third-harmonic generation microscopy of turbid media"
D. Débarre, N. Olivier & E. Beaurepaire
Opt. Express 15(14), 8913-8924 (2007).
"Structure sensitivity in third-harmonic generation microscopy"
D. Débarre, W. Supatto & E. Beaurepaire
Opt. Lett. 30(16), 2134-2136 (2005). PDF.

Software link: Calibration of deformable mirrors