Table des matières

Ir	itro	ductic	on : tour d'horizon des méthodes de Monte-Carlo	1	
	Un j	peu d'h	istoire : de l'aiguille Buffon à la neutronique	1	
	⊳ P	roblém	atique 1 - Calcul d'intégrale : quadrature, méthodes de Monte-		
		Carlo	et Quasi Monte-Carlo	7	
	⊳ P	roblém	atique 2 - Simulation de distribution complexe : algorithme de		
		Metro	polis-Hastings, échantillonneur de Gibbs	14	
⊳ Problématique 3 - Optimisation stochastique : algorithmes du rec					
		mul é e	et de Robbins-Monro	19	
		ъ)	വ	
		<u> </u>	artie A : boîte à outils pour la simulation	23	
Ι	\mathbf{Sim}	ulatio	n de variables aléatoires	25	
	I.1	Génér	ateur de nombres pseudo-aléatoires	25	
	I.2	Simula	ation de variable aléatoire unidimensionnelle	26	
		I.2.1	Inversion de la fonction de répartition	26	
		I.2.2	Variable gaussienne	29	
	I.3	Métho	ode de rejet	30	
		I.3.1	Simulation de loi conditionnelle	30	
		I.3.2	Simulation de loi (non conditionnelle) par méthode de rejet	30	
	I.4	Simula	ation d'un vecteur aléatoire	32	
		I.4.1	Le cas de vecteur gaussien	33	
		I.4.2	Modélisation de dépendance par les copules	34	
II	Convergences et estimations d'erreur				
	II.1	Loi des grands nombres			
	II.2	2 Théorème de la limite centrale et conséquences			
		II.2.1	Théorème de la limite centrale en dimension 1 et plus	39	
		II.2.2	Intervalles et régions de confiance asymptotiques	41	
		II.2.3	Application à l'évaluation de fonction de $\mathbb{E}(X)$	43	

	II.2.4	Applications au calcul de sensibilité d'espérance	48
II.	3 Autres	contrôles asymptotiques	51
	II.3.1	Bornes de Berry-Essen et développements d'Edgeworth	51
	II.3.2	Loi du log-itéré	51
	II.3.3	Théorème de la limite centrale presque-sûr	52
II.	4 Estima	ations non-asymptotiques	52
	II.4.1	A propos des inégalités exponentielles	53
	II.4.2	Inégalités de concentration dans le cas de variables aléa-	
		toires bornées	54
	II.4.3	Inégalités de concentration uniformes	55
	II.4.4	Inégalités de concentration dans le cas de bruit gaussien	61
IIIR	éduction	de variance	69
		illonnage antithétique	69
III	I.2 Condit	ionnement et stratification	71
	III.2.1	Technique de conditionnement $\dots \dots \dots \dots \dots$	71
		Technique de stratification	72
III	I.3 Variab	les de contrôle	74
		Le principe	74
		Choix optimal	74
III		illonnage préférentiel	76
	III.4.1	Changements de probabilité : notions de base et applications à	
		la méthode de Monte-Carlo $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	76
		Changements de probabilité par transformation affine	81
		Changements de probabilité par transformation de Esscher	84
	III.4.4	Méthodes adaptatives	87
	D		0.0
	<u>P</u>	artie B : simulation de processus linéaires	89
		différentielles stochastiques et formules de Feynman-Kac	
IV		evement brownien	92
		Un peu d'histoire	92
		Définition	93
		Simulation	97
		Equation de la chaleur	101
		Variation quadratique	104
IV	_	de stochastique et formule d'Itô	105
		Filtration et temps d'arrêt	105
	IV.2.2	Intégrale stochastique et ses propriétés	106

		IV.2.3	Processus d'Itô et formule d'Itô	108
	IV.3	Equati	ons différentielles stochastiques	109
		IV.3.1	Définition, existence, unicité	109
		IV.3.2	Propriété du flot et propriété de Markov	110
		IV.3.3	Exemples	110
	IV.4	Représ	entations probabilistes des équations aux dérivées partielles :	
		formul	es de Feynman-Kac	113
		IV.4.1	Générateur infinitésimal	113
		IV.4.2	Equation aux dérivées partielles linéaire parabolique avec condi-	
			tion de Cauchy	114
		IV.4.3	Equation aux dérivées partielles linéaire elliptique	118
		IV.4.4	Equation aux dérivées partielles linéaire parabolique avec condi-	
			tion de Cauchy-Dirichlet	119
		IV.4.5	Equation aux dérivées partielles linéaire elliptique avec condi-	
			tion de Dirichlet $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	121
	IV.5	Formu	les probabilistes pour les gradients	122
		IV.5.1	Méthode de dérivation p.s	122
		IV.5.2	Méthode de vraisemblance	123
T 7	0.1.6	19		105
V				125
	V . 1		ion et simulation	126
		V.1.1	, , , , , , , , , , , , , , , , , , , ,	126 128
		V.1.2		120
		V.1.3	Application au calcul d'espérance de diffusion : erreur de dis- crétisation et erreur statistique	129
	W 9	Convo		131
	V.2 V.3		~	133
	v .5	V.3.1	Convergence d'ordre 1	133
			~	136
	V.4		tion de processus stoppé	130 137
	V .4	V.4.1	Approximation discrète du temps de sortie	138
		V.4.1 V.4.2		140
		V.4.2 V.4.3	Méthode par décalage de frontière	
		۷.4.5	Methode par decarage de nontiere	142
V]	[Erı	eur st	atistique dans la simulation des équations différentielles	5
	stoc	hastiq	ues	145
	VI.1	Analy	se asymptotique : nombre de simulations et pas de temps	145
	VI.2	Analy	se non asymptotique de l'erreur statistique du schéma d'Euler .	147
	VI.3	Métho	ode multi-niveaux	150
	VI.4	Métho	odes de réduction de variance	154

VI.4.1	Variables de contrôle	154
VI.4.2	Echantillonage préférentiel	156
Pa	rtie C : simulation de processus non-linéaires	157
VII Equations	différentielles stochastiques rétrogrades	15 9
VII.1 Exemp	les	160
VII.1.1	Exemples venant des équations de réaction-diffusion $\ \ \ldots \ \ \ldots$	160
VII.1.2	Exemples venant des équations stochastiques $\ \ \ldots \ \ \ldots$	163
VII.2 Formul	les de Feynman-Kac	166
VII.2.1	Un résultat général	166
VII.2.2	Modèle jouet	168
VII.3 Discrét	tisation en temps et équation de programmation dynamique	171
	Discrétisation du problème	171
VII.3.2	Analyse d'erreur	172
VII.4 Autres	équations de programmation dynamique $\dots \dots \dots$.	174
VII.5 Une au	atre représentation probabiliste via les processus de branchemen	t 176
VIII Simulatio	n par régression empirique	17 9
VIII.1 Les di	fficultés d'une approche naïve	179
VIII.2 Appro	ximation d'espérances conditionnelles par méthodes de	
moindre	s carrés	182
	Régression empirique	182
VIII.2.2	Méthode SVD	184
	Exemple d'espace d'approximation : les polynômes locaux $. $.	186
	Estimations d'erreur robustes en le modèle	187
	Réglages des paramètres dans le cas de polynômes locaux	189
	Preuve des estimations d'erreur	190
	cation à la résolution de l'équation de programmation dyna-	
	ar régression empirique	192
	Echantillon d'apprentissage et espaces d'approximation	193
	Calculs des fonctions de régression empirique	193
	Equation de propagation d'erreur	195
	Réglage optimal des paramètres de convergence dans le cas	
(le polynômes locaux	200
	en interactions et équations non-linéaires au sens de)
McKean		203
	ques	203
IX.1.1 I	Echelles macroscopique versus microscopique	203

		IX.1.2 Exemples, applications	207
		Appendices	213
\mathbf{A}	An	nexe : quelques rappels et résultats complémentaires	213
	A.1	A propos des convergences	213
		A.1.1 Convergence p.s., en probabilité et dans L_1	213
		A.1.2 Convergence en loi	214
	A.2	Quelques inégalités utiles $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	215
		A.2.1 Inégalités sur les moments	215
		A.2.2 Inégalités sur les probabilités de déviation	217
Tal	ole d	les figures	219
Table des algorithmes			221
Bibliographie			223
Ind	lex		232