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1. Introduction

Griffith theory [18] is a model explaining the quasi-static crack growth in elastic
bodies under the assumption that the crack set is preassigned. In a two-dimensional
setting, let us denote by Ω ⊂ R2 the reference configuration of a linearly elastic body
allowing for cracks inside Γ̂. To fix the ideas, provided the evolution is sufficiently
smooth, that Γ̂ is a simple curve, and that the evolution is growing only in one
direction, then the crack is completely characterized by the position of its tip, and
thus by its arc length. Denoting by Γ(`) the crack of length ` inside Γ̂, the elastic
energy associated to a given kinematically admissible displacement u : ΩrΓ(`)→ R2

satisfying u = ψ(t) on ∂Ω r Γ(`), is given by

E(t;u, `) :=
1

2

∫

ΩrΓ(`)

Ce(u) : e(u) dx,

where C is the fourth order Hooke’s tensor, e(u) is the symmetrized gradient of u,
and ψ(t) : ∂Ω → R2 is a prescribed boundary datum depending on time, which is
the driving mechanism of the process. If the evolution is slow enough, it is reasonable
to neglect inertia and viscous effects so that the quasi-static assumption becomes
relevant: at each time t, the body is in elastic equilibrium. It enables one to define
the potential energy as

P(t, `) := E(t;u(t, `), `) = minE(t; ·, `),

where the minimum is computed over all kinematically admissible displacements at
time t. Therefore, given a cracking state, the quasi-static assumption permits to find
the displacement. In order to get the crack itself (or equivalently its length), Griffith
introduced a criterion whose fundamental ingredient is the energy release rate. It is
defined as the variation of potential energy along an infinitesimal crack increment, or
in other words, the quantity of released potential energy with respect to a small crack
increment. More precisely, it is given by

G(t, `) := −∂P

∂`
(t, `)

provided the previous expression makes sense. From a thermodynamical point of view,
the energy release rate is nothing but the thermodynamic force associated to the
crack length (the natural internal variable modeling the dissipative effect of fracture).
Griffith’s criterion is summarized into the three following items: for each t > 0

(i) G(t, `(t)) 6 Gc, where Gc > 0 is a characteristic material constant referred to
as the toughness of the body;

(ii) ˙̀(t) > 0;
(iii)

(
G(t, `(t))−Gc

)
˙̀(t) = 0.

Item (i) is a threshold criterion which stipulates that the energy release rate cannot
exceed the critical value Gc. Item (ii) is an irreversibility criterion which ensures
that the crack can only grow. The third and last item is a compatibility condition
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between (i) and (ii): it states that a crack will grow if and only if the energy release
rate constraint is saturated.

In [17] (see also [3]), it has been observed that Griffith’s criterion is nothing but
the necessary first order optimality condition of a variational model. More precisely,
if for every t > 0, (u(t), `(t)) satisfies:

(i) Unilateral minimality: for any ̂̀> `(t), and any v : Ω r Γ(̂̀) → R2 satisfying
v = ψ(t) on ∂Ω r Γ(̂̀), then

E (t) :=
1

2

∫

ΩrΓ(`(t))

Ce(u(t)) : e(u(t)) dx+Gc `(t) 6
1

2

∫

ΩrΓ(̂̀)
Ce(v) : e(v) dx+Gc ̂̀;

(ii) Irreversibility: ˙̀(t) > 0;
(iii) Energy balance:

Ė (t) =

∫

∂ΩrΓ(`(t))

(Ce(u(t))ν) · ψ̇(t) dH 1,

then (u(t), `(t)) is a solution of Griffith’s model. In the previous expression, H 1

denotes the 1-dimensional Hausdorff measure. The energy balance is nothing but a
reformulation of the second law of thermodynamics which asserts the non-negativity
of the mechanical dissipation. It states that the temporal variation of the total energy
(the sum of the elastic and surface energies) is compensated by the power of external
forces, which in our case reduces to the stress (Ce(u(t))ν acting on ∂Ω r Γ(`(t)) and
generated by the boundary displacement ψ(t). This new formulation relies on the
constrained minimization of the total energy of Mumford-Shah type

E (u,Γ) :=
1

2

∫

ΩrΓ

Ce(u) : e(u) dx+GcH
1(Γ)

which puts in competition a bulk (elastic) energy and a surface (Griffith) energy. One
of the main interests is that it makes it possible to get rid of the assumption of the
a priori knowledge of the crack path. Following [17], a quasi-static evolution is defined
as a mapping t 7→ (u(t),Γ(t)) satisfying

(i) Unilateral minimality: for any Ω ⊃ Γ̂ ⊃ Γ(t), and any v : Ωr Γ̂→ R2 satisfying
v = ψ(t) on ∂Ω r Γ̂, then

E (u(t),Γ(t)) 6 E (v, Γ̂);

(ii) Irreversibility: Γ(s) ⊂ Γ(t) for every s 6 t;
(iii) Energy balance:

E (u(t),Γ(t)) = E (u(0),Γ(0)) +

∫ t

0

∫

ΩrΓ(s)

Ce(u(s)) : e(ψ̇(s)) dx ds.

An existence result for this model has been given in [5] (see also [13, 16, 12] in other
contexts) for cracks belonging to the class of compact and connected subsets of Ω.
The main reason of this assumption was to ensure the lower semicontinuity of the
Mumford-Shah type functional (u,Γ) 7→ E (u,Γ) with respect to a reasonable notion
of convergence. The lower semicontinuity of the surface energy with respect to the
Hausdorff convergence of cracks is a consequence of Gołab’s Theorem (see [15]), while

J.É.P. — M., 2015, tome 2



120 J.-F. Babadjian, A. Chambolle & A. Lemenant

the continuity of the bulk energy is a consequence of continuity results of the Neumann
problem with respect to the Hausdorff convergence of the boundary (see [4, 6]) toge-
ther with a density result [5]. In any cases, all these results only hold in dimension 2

and in the class of compact and connected sets.
If one is interested into fine qualitative results such as crack initiation (see [8])

of kinking (see [7]) it becomes necessary to understand the nature of the singularity
at the crack tip. Therefore one should be able to make rigorous a suitable notion
energy release rate. The first proof of the differentiable character of the potential
energy with respect to the crack length has been given in [14] (see also [22, 28, 27]).
The generalized variational setting described above, a mathematical justification of
the notions of energy release rate for any incremental crack attached to a given initial
crack has been in [7] in the case where the crack is straight in a small neighborhood of
its tip. In the footstep of that work, we attempt here weaken the regularity assumption
on the initial crack, which is merely closed, connected, with density 1/2 at the origin
(that imply to blow up as a segment at the origin, up to rotations).

1.1. Main Results. — Our main results are contained in Theorem 6.4 and Theorem
7.1 respectively in Section 6 and Section 7.

1.1.1. First Result. — The first main result Theorem 6.4 is a purely P.D.E. result. We
analyze the blow-up limit of the optimal displacement at the tip of the given initial
crack. We prove that for some suitable subsequence, the blow-up limit converges to
the classical crack-tip function in the complement of a half-line, i.e., of the form
(1.1) κ1φ1 + κ2φ2,

for some constants κ1 and κ2 ∈ R, while φ1 and φ2 are positively 1/2-homogenous
functions which are explicitly given by (6.15) and (6.16) below.

This part can be seen as a partial generalization in planar elasticity of what was
previously done in the anti-plane case [9]. Mathematically speaking, the corresponding
function to be studied is now a vectorial function satisfying a Lamé type system,
instead of being simply a scalar valued harmonic function. One of the key obstacles
in the vectorial case is that no monotonicity property is known for such a problem,
which leads to a slightly weaker result than in the scalar case: the convergence of
the blow-up sequence only holds up to subsequences, and nothing is known for the
whole sequence. Consequently, the constants κ1 and κ2 in (1.1) a priori depend on
this particular subsequence. As a matter of fact, this prevents us to define properly
the stress intensity factor analogously to what was proposed in [9]. On the other hand,
we believe that the techniques employed in the proof and the results on their own are
already interesting. In addition, the absence of monotonicity is not the only difference
with the scalar case, which led us to find a new proof relying on a duality approach
via the so-called Airy function in order to bypass some technical problems.

Another substantial difference with the scalar case appears while studying homo-
geneous solutions of the planar Lamé system in the complement of a half-line, which
is crucial in the understanding of blow-up solutions at the crack tip. For harmonic
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functions it is rather easy to decompose any solutions as a sum of spherical-harmonics
directly by writing the operator in polar coordinates, and identify the degree of ho-
mogeneity of each term with the corresponding eigenvalue of the Dirichlet-Laplace-
Beltrami operator on the circle minus a point. For the Lamé system, or alternatively
for the biharmonic equation, a similar naive approach cannot work. The appropriate
eigenvalue problem on the circle have a more complicate nature, and analogous results
rely on an abstract theory developed first by Kondrat’ev which rests on pencil op-
erators, weighted Sobolev spaces, the Fredholm alternative, and calculus of residues.
We used this technology in the proof of Proposition 6.3 for which we could not find
a more elementary argument.

1.1.2. Second result. — The second main result Theorem 7.1 concerns the energy
release rate of an incremental crack Γ, which is roughly speaking the derivative of the
elastic energy with respect to the crack increment (see (7.1) for the precise definition).
We prove that the value of this limit is realized as an explicit minimization problem in
the cracked-plane R2r

(
(−∞, 0]×{0}

)
. One can find a similar statement in [7, Th. 3.1],

but with the additional assumption that the initial crack is a line segment close to
the origin. We remove here this hypothesis, establishing the same result for any initial
crack which is closed, connected and admits a line segment as blow-up limit at the
origin. The starting point for this generalization is the knowledge of the blow-up
limit at the origin for displacement associated to a general initial crack, namely our
first result Theorem 6.4. Since this result holds only up to subsequences, the same
restriction appears in the statement of Theorem 6.4 as well.

Therewith, it should be mentioned that Theorem 7.1 is new even for the scalar case,
for which the conclusion is even more accurate. Indeed in this case, the monotonicity
formula of [9] ensures that the convergence holds for the whole sequence and not only
for a subsequence.

The paper is organized as follows: after introducing the main notation in Section 2,
we describe precisely the mechanical model in Section 3. Section 4 is devoted to
establish technical results related to the existence of the harmonic conjugate and the
Airy function associated to the displacement in a neighborhood of the crack tip. In
Section 5, we prove lower and upper bounds of the energy release rate. The blow-up
analysis of the displacement around the crack tip is the object of Section 6. Section 7 is
devoted to give a formula for the energy release rate as a global minimization problem.
Finally, we shortly review Kondrat’ev theory of elliptic regularity vs singularity inside
corner domains in an appendix.
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2. Mathematical preliminaries

2.1. General notation. — The Lebesgue measure in Rn is denoted by L n, and the
k-dimensional Hausdorff measure by H k. If E is a measurable set, we will sometimes
write |E| instead of L n(E). If a and b ∈ Rn, we write a · b =

∑n
i=1 aibi for the

Euclidean scalar product, and we denote the norm by |a| =
√
a · a. The open ball

of center x and radius % is denoted by B%(x). If x = 0, we simply write B% instead
of B%(0).

We write Mn×n for the set of real n × n matrices, and Mn×n
sym for that of all real

symmetric n×n matrices. Given a matrix A ∈Mn×n, we let |A| :=
√

tr(AAT ) (AT is
the transpose of A, and trA is its trace) which defines the usual Euclidean norm over
Mn×n. We recall that for any two vectors a and b ∈ Rn, a⊗ b ∈Mn×n stands for the
tensor product, i.e., (a⊗ b)ij = aibj for all 1 6 i, j 6 n, and a� b := 1

2 (a⊗ b+ b⊗a) ∈
Mn×n

sym denotes the symmetric tensor product.
Given an open subset U of Rn, we denote by M (U) the space of all real-valued

Radon measures with finite total variation. We use standard notation for Lebesgue
spaces Lp(U) and Sobolev spaces W k,p(U) or Hk(U) := W k,2(U). If Γ is a closed
subset of U , we denote by Hk

0,Γ(U) the closure of C∞c (U rΓ) in Hk(U). In particular,
if Γ = ∂U , then Hk

0,∂U (U) = Hk
0 (U).

2.2. Capacities. — In the sequel, we will use the notion of capacity for which we
refer to [1, 21]. We just recall the definition and several facts. The (k, 2)-capacity of
a compact set K ⊂ Rn is defined by

Capk,2(K) := inf
{
‖ϕ‖Hk(Rn) : ϕ ∈ C∞c (Rn), ϕ > 1 on K

}
.

This definition is then extended to open sets A ⊂ Rn by

Capk,2(A) := sup
{

Capk,2(K) : K ⊂ A, K compact
}
,

and to arbitrary sets E ⊂ Rn by

Capk,2(E) := inf
{

Capk,2(A) : E ⊂ A, A open
}
.

One of the interests of capacity is that it enables one to give an accurate sense to
the pointwise value of Sobolev functions. More precisely, every u ∈ Hk(Rn) has a
(k, 2)-quasicontinuous representative ũ, which means that ũ = u a.e. and that, for
each ε > 0, there exists a closed set Aε ⊂ Rn such that Capk,2(RnrAε) < ε and ũ|Aε
is continuous on Aε (see [1, Sec. 6.1]). The (k, 2)-quasicontinuous representative is
unique, in the sense that two (k, 2)-quasicontinuous representatives of the same func-
tion u ∈ Hk(Rn) coincide Capk,2-quasi-everywhere. In addition, if U is an open subset
of Rn, then u ∈ Hk

0 (U) if and only if for all multi-index α ∈ Nn with length |α| 6 k,
∂αu has a (k − |α|, 2)-quasicontinuous representative that vanishes Capk−|α|,2-quasi
everywhere on ∂U , i.e., outside a set of zero Capk−|α|,2-capacity (see [1, Th. 9.1.3]).
In the sequel, we will only be interested to the cases k = 1 or k = 2 in dimension
n = 2.
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2.3. Kondrat’ev spaces. — Following [25, Sec. 6.1], if C is an open cone of Rn with
vertex at the origin, we define for any β ∈ R and ` > 0 the weighted Sobolev
space V `β (C) by the closure of C∞c (C r {0}) with respect to the norm

‖u‖V `
β

(C) :=

Å∫
C

∑

|α|6`
|x|2(β−`+|α|)|∂αu(x)|2dx

ã1/2

.

It will also be useful to introduce the spaces V `β (C) for ` < 0, which is defined as the
dual space of V −`−β (C), endowed with the usual dual norm.

Observe that when ` > 0 then u ∈ V `β (C) if and only if the function x 7→
|x|β−`+|α|∂αu(x) ∈ L2(C) for all |α| 6 `. If one is interested in homogeneous functions,
it turns out that the parameter β plays a different role regarding to the integrability
at the origin or at infinity. To fix the ideas, one can check that in dimension 2, a
function of the form x 7→ |x|γf(x/|x|) around the origin and with compact support
belongs to V `β (C) for every β < 1 − γ. On the other hand, a function having this
behavior at infinity and vanishing around the origin will belong to a space V `β (C) for
every β > 1 − γ. For instance if γ = 3/2, then the corresponding space of critical
exponent would be that with β = −1/2.

2.4. Functions with Lebesgue deformation. — Given a vector field (distribution)
u : U → Rn, the symmetrized gradient of u is denoted by

e(u) :=
∇u+∇uT

2
.

In linearized elasticity, u stands for the displacement, while e(u) is the elastic strain.
The elastic energy of a body is given by a quadratic form of e(u) so that it is natural to
consider displacements such that e(u) ∈ L2(U ;Mn×n

sym ). If U has Lipschitz boundary,
it is well known that u actually belongs to H1(U ;Rn) as a consequence of Korn’s
inequality (see e.g. [10, 31]). However, when U is not smooth, we can only assert that
u ∈ L2

loc(U ;Rn). This motivates the following definition of the space of Lebesgue
deformations:

LD(U) := {u ∈ L2
loc(U ;Rn) : e(u) ∈ L2(U ;Mn×n

sym )}.
If U is connected and u is a distribution with e(u) = 0, then necessarily it is a
rigid movement, i.e., u(x) = Ax + b for all x ∈ U , for some skew-symmetric matrix
A ∈ Mn×n and some vector b ∈ Rn. If, in addition, U has Lipschitz boundary, the
following Poincaré-Korn inequality holds: there exists a constant cU > 0 and a rigid
movement rU such that
(2.1) ‖u− rU‖L2(U) 6 cU‖e(u)‖L2(U), for all u ∈ LD(U).

According to [2, Th. 5.2, Exam. 5.3], it is possible to make rU more explicit in the
following way: consider a measurable subset E of U with |E| > 0, then one can take

rU (x) :=
1

|E|

∫

E

u(y) dy +

Å
1

|E|

∫

E

∇u(y)−∇u(y)T

2
dy

ãÅ
x− 1

|E|

∫

E

y dy

ã
,

provided the constant cU in (2.1) also depends on E.
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