En poursuivant votre navigation, vous acceptez l'utilisation de cookies destinés à améliorer la performance de ce site et à vous proposer des services et contenus personnalisés.

X

Détermination de Formes et Identification

Equipe-projet commune avec INRIA Saclay-Ile de France.

Responsable : Houssem Haddar, Directeur de Recherche INRIA.

Chercheurs confirmés :

-Grégoire Allaire, Professeur à l'Ecole polytechnique
-Marcella Bonazzoli, Chargée de Recherche INRIA
-Lucas Chesnel, Chargé de Recherche INRIA
-Pietro Marco Congedo, Chargé de Recherche INRIA
-Jing-Rebecca Li, Directrice de Recherche INRIA

Chercheurs associés :

- Lorenzo Audibert, EDF R&D
-Olivier Le Maitre, Directeur de Recherche CNRS

Post-doctorants :

-  Xiaoli Liu
-  Imen Mekkaoui

Doctorants :

- Bilel Charfi
- Anabel Del Val
- Hugo Girardon
- Giulio Gori
- Marwa Kchaw
- Kevish Napal
- Joao Reis

Assistante administrative :

- Marie Enée

 


Activités de recherche :

The research activity of our team is dedicated to the design, analysis and implementation of efficient numerical methods to solve inverse and shape/topological optimization problems in connection with acoustics, electromagnetism, elastodynamics, and diffusion.

Sought practical applications include radar and sonar applications, bio-medical imaging techniques, non-destructive testing, structural design, composite materials, and diffusion magnetic resonance imaging.

Roughly speaking, the model problem consists in determining information on, or optimizing the geometry (topology) and the physical properties of unknown targets from given constraints or measurements, for instance, measurements of diffracted waves or induced magnetic fields.

In general this kind of problems is non-linear. The inverse ones are also severely ill-posed and therefore require special attention from regularization point of view, and non-trivial adaptations of classical optimization methods.

We are particularly interested in the development of fast methods that are suited for real-time applications and/or large scale problems. These goals require to work on both the physical and the mathematical models involved and indeed a solid expertise in related numerical algorithms.

Our scientific research interests are the following :

- Theoretical understanding and analysis of the forward and inverse mathematical models, including in particular the development of simplified models for adequate asymptotic configurations.
- The design of efficient numerical optimization/inversion methods which are quick and robust with respect to noise. Special attention will be paid to algorithms capable of treating large scale problems (e.g. 3-D problems) and/or suited for real-time imaging.
- Development of prototype softwares for precise applications or tutorial toolboxes.

 

La page INRIA de l'équipe.